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Abstract

The Karner blue butterfly (Lycaeides melissa samuelis, or Kbb), a federally endangered

species under the U.S. Endangered Species Act in decline due to habitat loss, can be fur-

ther threatened by climate change. Evaluating how climate shapes the population trend of

the Kbb can help in the development of adaptive management plans. Current demographic

models for the Kbb incorporate in either a density-dependent or density-independent man-

ner. We instead created mixed density-dependent and -independent (hereafter “endo-exog-

enous”) models for Kbbs based on long-term count data of five isolated populations in the

upper Midwest, United States during two flight periods (May to June and July to August) to

understand how the growth rates were related to previous population densities and abiotic

environmental conditions, including various macro- and micro-climatic variables. Our endo-

exogenous extinction risk models showed that both density-dependent and -independent

components were vital drivers of the historical population trends. However, climate change

impacts were not always detrimental to Kbbs. Despite the decrease of population growth

rate with higher overwinter temperatures and spring precipitations in the first generation, the

growth rate increased with higher summer temperatures and precipitations in the second

generation. We concluded that finer spatiotemporally scaled models could be more reward-

ing in guiding the decision-making process of Kbb restoration under climate change.
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Introduction

Butterflies are benchmark indicator species due to acute sensitivities to abiotic environments

[1–6]. Climate change could interfere with their lifecycle developments and interactions with

host plants [7,8]. The resulting responses of butterflies in terms of survival, morphology, phe-

nology, reproduction, and geographical distribution under novel conditions are well docu-

mented, potentially jeopardizing species that have reached the limit of adaptive capacity [9–

12]. However, the impacts are mixed: it was found that warmer temperatures decreased larva

survival and adult body size and concurrently enhanced egg and pupa survival, advanced flight

period, altered female fertility, and induced extra generations [13–18]. Furthermore, drought

can reduce food availability and delay growth, but excessive rainfall may disrupt egg laying

and foraging of nectar and pollen [19–22].

The Karner blue butterfly (Lycaeides melissa samuelis, or Kbb), first described by Vladimir

Nabokov in 1944, was listed as federally endangered in 1992 [23–25]. Like many species in the

family Lycaenidae, it is vulnerable to climate change due to limited dispersal ability (< 1 km),

single host plant (i.e., monophagy on wild lupine, Lupinus perennis), and habitat specialist of

high-quality oak savanna and pine barren which have been lost and fragmented for decades as

the result of fire suppression, agricultural intensification, and urbanization [26–30]. The Kbb

is also experiencing new climate patterns, such as milder winter temperatures and prolonged

summer droughts, further accelerating population declines [31–34]. Today, native Kbb popu-

lations are small and isolated within the United States and Canada in the states of New York,

Michigan, and Wisconsin, extirpated in the states of Illinois, Indiana, and the province of

Ontario, and reintroduced in the states of Ohio, New Hampshire, and Minnesota [35,36].

As a bivoltine species, first-generation Kbbs overwinter as eggs until early April, hatch as

larvae feeding on wild lupines, become pupae undergoing a metamorphosis in mid-May, and

emerge as adults in June with a lifespan of 5–7 days to reproduce. The second generation

occurs during the summer, with hatching, pupation, and emergence in early June, late June,

and early July, respectively [37]. Their thermal and drought tolerances are specific to each life

stage [38–41]. Studies have shown that climatic stresses experienced by one stage influence the

next by the ‘carry-over effect,’ and stresses experienced in previous generations also affect sub-

sequent generations by the ‘transgenerational effect’ [42–45]. Therefore, attempts to under-

stand climate impacts on Kbb require the consideration of both carry-over and

transgenerational effects throughout the lifecycle [46–50].

Microclimates are usually decoupled from broad climatic gradients and are mainly deter-

mined by terrain and canopy coverage [51–54]. For instance, south-facing slopes are generally

warmer than north-facing slopes in the northern hemisphere; higher elevations are colder and

drier than lower altitudes [55,56]. Moreover, Fuller [57] ranked habitat loss, fragmentation,

and weather-related loss of eggs/larvae as the top three factors contributing to Kbb population

crashes. Strong density dependencies (i.e., per capita growth rate changes with density) were

also nested within modeled demographic trends. These findings implicated that density-

dependent and fine-scale, topo-climatic variables were critical to predicting seasonal and

annual Kbb population variations [58–60].

In this study, we built extinction risk models for each of the two generations of five Kbb

populations in the US. The models were endo-exogenous, capturing both density-dependent

and density-independent factors that may interact in complex ways to regulate population

growth rate instead of presence/absence typically utilized in species distribution models [61–

63]. We hypothesized that i). higher temperature and precipitation could inhibit and promote

the population growth of Kbbs, respectively, and ii). best-fitted models should vary across pop-

ulations owing to their unique adaptations to local environments.
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Materials and methods

Density-dependent data

We obtained access to the data for five Kbb populations across the species’ range (Table 1).

Four populations inhabited oak savannas in the Midwest U.S.: central Wisconsin (CW), north-

western Wisconsin (NW), Fort McCoy (FM), and Indiana Dunes National Park (IDNP). One

population inhabited the pine barrens in the eastern U.S.—Albany Pine Bush Preserve

(APBP). The data represented adult Kbbs surveyed at multiple permanent sites (S1 Table)

along one to several linear transects repeatedly surveyed over a 7–14 day interval during each

of the two flight periods (i.e., from late May to late June for the first generation, and from mid-

July to mid-August for the second generation) over 8–27 years.

As the number of surveys per flight period and the total length of transect per survey varied

widely across researchers and years, we calculated mean counts per kilometer of transect gen-

eration-by-generation for each sampled site. We estimated density as the number of adult indi-

viduals per hectare (ha) by assuming that a kilometer of transect represented a 2.5-ha area

[64]. We further calculated the population growth rate (λ) based on density change between

the current and the previous generations.

Density-independent data

We downloaded monthly climatic data from the Parameter-elevation Relationships on Inde-

pendent Slopes Model (PRISM Climate Group) as raster maps at a resolution of 30 arc seconds

(1/40th of a decimal degree). Each pixel was 800 m x 800 m [65,66]. PRISM’s temperature and

precipitation are gridded interpolations of climate data and digital elevation models (DEM)

[67,68]. We examined four monthly climate variables–minimum temperature (IT), maximum

temperature (AT), mean temperature (MT), and total precipitation (PT)–for each site and

year surveys were conducted. As it is crucial to understand how climate interacts with Kbb life-

cycles, we approximated the occurrence periods of three life stages for both generations by cal-

culating the mean value of multiple consecutive months: egg (Dec-Mar as overwinter), larvae

Table 1. Summary of flight-period counts of five Karner blue butterfly (Lycaeides melissa samuelis) populations. The state, county, years, number of sites, total tran-

sect length per survey on average, total observed numbers of individuals throughout the project lifespan, total number of surveys throughout the project lifespan, and data

sources are included. Refer to Fig 1 for the mapped locations of these five populations.

Population State County Year Site Transect Length

(m)

Observed

Individual

Survey

Number

Data Source

Central WIa (CW) WI Jackson 1990–

2018

8 700 17514 892 Ann & Scott Swengel (Independent

Researchers)

Wood 1990–

2018

5

Portage 2000–

2018

1

NWb WI (NW) Burnett 2005–

2013

8 700 2442 576

Fort McCoy (FM) Monroe 1997–

2018

12 1049 23999 1595 Tim Wilder (Department of Defense, Fort

McCoy)

INa Dunes National Park

(IDNP)

IN Porter 1994–

2011

6 800 30491 664 Randy Knutson (IDNP)

Albany Pine Bush Preserve

(APBP)

NYa Albany 2007–

2018

8 980 132093 1049 Steven Campbell (APB Commission)

aWI: Wisconsin; IN: Indiana; NY: New York.
bNW: Northwest.

https://doi.org/10.1371/journal.pone.0262382.t001
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and pupae (Apr-May as spring), and flight (Jun) for the first generation; egg (Jun), larvae and

pupae (Jul), and flight (Aug) for the second generation.

We extracted three topographic variables–elevation, slope, and aspect—from 30 m U.S.

Geological Survey (USGS) DEMs (in ArcGIS) [69]. The circular aspect layer was converted to

a topographic solar radiation index (i.e., trasp) using the following linear transformation:

trasp ¼ 1 � cos
p

180
∗ aspect � 30ð Þ

h i.

2

The transformed output was a continuous variable between 0 and 1, where north-oriented

slopes were assigned 0, and south-oriented slopes were 1 [70]. We also extracted canopy cover-

age from the 2011 National Land Cover Database (NLCD) and U.S. Forest Service (USFS)

Tree Canopy Cover at 30 m resolution [71]. We assumed that topography and tree canopy

cover had been constant over the past two decades [72].

Statistical analysis

We included both density-dependent and -independent variables to build endo-exogenous

models specific to (i) each population and (ii) all the surveyed locations of the five populations

Fig 1. Mapping of the 48 sampled permanent sites of five Karner blue butterfly (Lycaeides melissa samuelis) populations. (a) Locations of all the sites. (b)

Fourteen sites for populations in central Wisconsin. (c) Twelve sites for populations in Fort McCoy, Wisconsin. (d) Eight sites for populations in northwestern

Wisconsin. (e) Six sites for populations in Indiana Dunes National Park, Indiana. (f) Eight sites for populations in Albany Pine Bush Preserve, New York.

https://doi.org/10.1371/journal.pone.0262382.g001
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of Kbbs pooled together (All). We modeled the first and the second generations separately

because they were mostly non-overlapped except in June and experienced different climate

patterns [73,74]. In total, we created 12 models: 6 populations * 2 generations. Each model had

λ as the response variable and 18 standardized explanatory variables: two previous-generation

densities, four (mean, minimum, and maximum temperatures, and total precipitation) * three

(egg, larvae/pupae, and flight stages) monthly climates, three topographies (elevation, slope,

and trasp), and tree canopy. As incorporating more than two previous generations was

unlikely to increase explanatory power [65], we included densities of the first and the second

generations in the previous year (Previous First (PF) and Previous Second (PS), respectively)

for the first generation, and the densities of the second generation in the previous year (PS)

and the first generation in the current year (CF) for the second generation. Due to various

sampled sites across the five populations, we minimized estimation bias for All models using

bootstrapping to balance oversampled and underrepresented populations [75,76]. The model

equation is expressed as:

lt ¼ b0 þ b1Yt� 1 þ b2Yt� 2 þ b3X1t þ � � � þ b17X16t þ εt

where λt is the density growth rate from the previous generation to the current generation; Yt-1

and Yt-2 are the densities of one and two generations ago, respectively; Xnt are the 16 macro-

and microclimatic environmental factors in the current year. Since no “previous generations”

existed for the first-year data, we started the models from the second year.

We applied random forest (RF, “randomForest” R package [77]) for regression because pre-

vious studies found that it was more robust to model population trends than regression-based

or other machine-learning algorithms [78,79]. We then used the genetic algorithm (GA) in

package “caret” for feature selection [80]. GA, as a computationally efficient approach, gener-

ated an entire population of feasible solutions that were repeatedly subjected to “cross-over”

and “random mutation” until the combinatorial predictor optimum of the lowest Akaike

Information Criterion (AIC) was identified [81]. However, GA risks overfitting, and RF output

interpretation is often not straightforward. We, therefore, further applied jack-knife partial

least squares (PLS) using the package “mdatools” [82] to identify the estimated coefficient,

standard error, and p-value of each variable left in the “best” models. This linear latent

approach is appropriate when the matrix of predictors has more variables than observations,

especially with multicollinearities and missing values [83]. As a non-parametric approach,

both RF and PLS make no assumptions about data distribution. The sample R codes were

included in the S1 File.

Ethics statement

The study did not involve human subjects, vertebrates, or cephalopods, nor any kind of animal

sacrifice. It did involve the observation of a federally listed endangered species–the Karner

blue butterfly. Approvals from the U.S. Fish and Wildlife Service to conduct Kbb counts were

obtained on federal, state, and non-governmental organization lands managed by the U.S.

National Park Service (Indiana Dunes National Park population), U.S. Department of Defense

(Fort McCoy population), and the Albany Pine Bush Commission (Albany Pine Bush popula-

tion), and on public-access land (state- and county-owned, or public access rights-of-way

immediately along public roads–central and northwest Wisconsin populations). According to

data owners, all the surveys were legally carried out without intentionally handling, harassing,

or taking specimens. For our study, no permits were required to share the raw data with us for

modeling and analysis.
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Results

In the first generation (Table 2), population growth rate λ decreased with increased density of

previous-year second generation for the All model and the three populations in Wisconsin (cen-

tral Wisconsin, northwestern Wisconsin, and Fort McCoy) with p-values< 0.05. However, for

those in Indiana Dunes National Park and Albany Pine Bush Preserve, the density of previous-

year first generation displayed the significant inverse correlation with λ (p< 0.01). λ was consis-

tently smaller with higher overwinter temperatures (mean, max, and min), spring total precipi-

tation, and June min temperature, though these negative relationships were not always

significant. Overwinter precipitation and spring max temperature were only significant to the

population in Albany Pine Bush Preserve (p< 0.001 and p< 0.01, respectively)–the only popu-

lation not in the Upper Midwest. The rest of the macroclimate variables, including spring min

temperature, June mean and max temperatures, and June total precipitation, were not con-

tained in any best-fitted model. The GA approach selected none of the macroclimatic variables

the model of northwestern Wisconsin–the population at the northern edge of Kbb’s range.

Despite being included in the final northwestern Wisconsin and Indiana Dunes National Park

models, the four topo-climatic variables were nonsignificant (p> 0.05) for both populations.

Table 2. Best-fit partial least-square (PLS) models for all the five populations of Karner blue butterfly (Lycaeides melissa samuelis) pooled and for each population

during the first generation. The adjusted-R2 value of each model is added to the last row of the table.

Alld CW NW FM IDNP APBP

PSe -0.80±0.30a *b -0.88±0.359 * -0.79±0.351 * -0.18±0.123 * -0.82±0.386 ns -0.46±0.218 ns

PF c 0.63±0.218 * -0.88±0.146 ** -0.68±0.120 **
MT_OW -0.69±0.222 * -0.07±0.029 ns -0.10±0.016 ** -0.09±0.028 *
MT_SP 0.26±0.080 ns

MT_JN

AT_OW -0.98±0.252 * -0.03±0.027 *
AT_SP 0.22±0.041 **
AT_JN

IT_OW -0.63±0.209 * -0.80±0.162 ** -0.11±0.038 * -0.19±0.070 *
IT_SP

IT_JN -0.32±0.139 ns -0.56±0.131 * -0.11±0.044 *
PT_OW -0.27±0.020 ***
PT_SP -0.53±0.053 ** -0.96±0.041 *** -0.16±0.049 * -0.28±0.170 ns

PT_JN

Canopy -0.05±0.062 ns -0.03±0.022 ns

Elevation -0.12±0.064 ns 0.08±0.072 ns

Slope -0.05±0.038 ns 0.11±0.070 ns

Trasp -0.02±0.106 ns 0.15±0.070 ns

Adj-R2 0.45 0.43 0.78 0.46 0.89 0.62

a Estimated coefficient ± standard error.
b *: p-value < 0.05

**: p-value < 0.01

***: p-value < 0.001; ns: p-value > 0.05.
c Blank cells represent that the variable was removed from the model after feature selection by genetic algorithm (GA).
d All: All five populations; CW: Central Wisconsin; NW: Northwestern Wisconsin; INDP: Indiana Dunes National Park; APBP: Albany Pine Bush Preserve.
e PS: Density of previous-year second generation; PF: Density of previous-year first generation; MT: Mean Temperature; AT: Maximum Temperature; IT: Minimum

Temperature; PT: Total Precipitation; OW: Overwinter; SP: Spring; JN: June.

https://doi.org/10.1371/journal.pone.0262382.t002
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In the second generation (Table 3), λ increased with higher density of previous-year second

generation, June min temperature, July total precipitation, and August mean, min, and max

temperatures in more than one population with p-values < 0.05). The λ also uniquely

increased with higher June mean temperature and August total precipitation (p< 0.05) in cen-

tral Wisconsin and northwestern Wisconsin, respectively. The density of the current-year first

generation was never significant, and both June max temperature and total precipitation were

absent in all models. Unlike the first generation, tree canopy and slope became significant in

multiple populations with consistent positive and negative correlations, respectively. In partic-

ular, the p-values of slope were smaller than 0.01 in Fort McCoy and Indiana Dunes National

Park–both populations were closer to the southern edge of Kbb’s range than the other three

populations. For those in Indiana Dunes National Park specifically, λ further decreased with

larger trasp, and none of the density-dependent and macroclimatic variables were significant.

Discussion

Best-fitted models predicting a measure of Kbb growth rate differed between generations and

among the five populations we studied. However, the density of the previous-year second gen-

eration (PS) almost always had larger regression coefficients than any individual density-

dependent variable. The association between population growth rate λ and PS was negative in

Table 3. Best-fit partial least-square (PLS) models for all the five populations of Karner blue butterfly (Lycaeides melissa samuelis) pooled and for each population

during the second generation. The adjusted-R2 value of each model is added to the last row of the table.

Alld CW NW FM IDNP APBP

CFe -0.36±0.22a nsb -0.47±0.109 ns -0.92±0.537 ns 0.14±0.122 ns

PS 0.21±0.055 * 0.15±0.038 * 0.07±0.031 ns 0.40±0.152 * 0.08±0.069 ns 0.13±0.070 *
MT_JN c 0.05±0.017 *
MT_JL 0.05±0.031 ns

MT_AG 0.04±0.017 * 0.08±0.027 *
AT_JN

AT_JL 0.04±0.036 * 0.09±0.040 ns

AT_AG 0.07±0.037 * 0.09±0.038 ns 0.04±0.016 ns 0.14±0.078 ns 0.08±0.026 *
IT_JN 0.08±0.018 * 0.46±0.359 ns 0.08±0.030 ns

IT_JL 0.06±0.028 ns

IT_AG 0.07±0.021 ns 0.08±0.028 *
PT_JN

PT_JL 0.09±0.038 ns 0.09±0.024 * 0.05±0.033 ns 0.20±0.080 * 0.02±0.018 ns

PT_AG 0.04±0.032 *
Canopy 0.08±0.023 * 0.08±0.013 *

Elevation -0.03±0.017 ns

Slope -0.10±0.029 * -0.11±0.026 * -0.29±0.054 ** -0.09±0.019 ** 0.06±0.038 ns

Trasp -0.07±0.015 *
Adj-R2 0.21 0.26 0.31 0.41 0.46 0.20

a Estimated coefficient ± standard error.
b *: p-value < 0.05

**: p-value < 0.01; ns: p-value > 0.05.
c Blank cells represent that the variable was removed from the model after feature selection by genetic algorithm (GA).
d All: All five populations; CW: Central Wisconsin; NW: Northwestern Wisconsin; INDP: Indiana Dunes National Park; APBP: Albany Pine Bush Preserve.
e PS: Density of previous-year second generation; CF: Density of current-year first generation; MT: Mean Temperature; AT: Maximum Temperature; IT: Minimum

Temperature; PT: Total Precipitation; JN: June; JL: July; AG: August.

https://doi.org/10.1371/journal.pone.0262382.t003
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the first generation and positive in the second, verifying the findings for other multivoltine

species that the population size of the second generation is typically three to four times larger

than the size of the first generation from in the same year [84–86]. This pattern of two-genera-

tion lagging might be pertinent to the phenology of the larval hostplant, wild lupine: first-gen-

eration larvae feed on small, newly sprouted leaves in early spring, while they hatch

approximately a week after eggs are laid on more mature leaves with, perhaps, higher nutrient

quality during the second generation [87,88]. However, Grundel [89] found that under ordi-

nary summer conditions, such as drought, leaf nutrients were often lower during the second

generation compared to freshly emerging lupine in spring. Thus, an alternative mechanism

could be that a higher overwinter mortality of eggs led to a lower density of emerging adults in

late spring.

In the first generation of our studied five populations, the decrease of λ along with higher

overwinter temperatures (i.e., mean, minimum, and maximum) and precipitation were con-

gruent with previous studies on the butterflies [90–93]. There are three potential explanations

for these population declines [57]: first, higher temperature accelerates the thawing of snow

covers, resulting in quicker heat loss of eggs [94]; second, warm, moist conditions may cue ear-

lier hatching from eggs in late winter when food sources are limited and environmental condi-

tions are harsh [95–97]; third, butterfly eggs would be more vulnerable to diseases and fungal

infections with higher temperature and precipitation [98]. In spring, precipitation was a better

predictor of λ for Kbbs, unlike some other butterfly species for which higher temperature

drove earlier maturation from the pupa and thus smaller body sizes and reduced fitness [99–

108]. The negative association between λ and precipitation indicated that rainfall shortage

might not necessarily hamper larval and pupal development, especially as the host wild lupine

is a drought-tolerant native species [109]. The absence of June variables in models suggested

that Kbbs may become much less sensitive to abiotic conditions after the emergence of adults.

In the second generation of these five populations, associations between λ and temperatures

were consistently positive. A warmer summer was considered conducive to multivoltine spe-

cies [110]. Higher June and July temperatures might enhance host plant quality and advance

adult emergence, resulting in a higher chance of the appearance of an extra generation [85].

However, the envisaged third generation, if present, is worth further research as this could be a

maladaptive response if novel conditions in the fall were unfavorable [111]. Lower August

temperatures, especially the lower August maximum temperature, could trigger localized

extinction, whereas a warmer August may promote egg laying due to greater nectar/pollen

availability during extended flight periods [112,113]; hence, the benefit of warming could be

passed to the next overwinter generation [114,115]. On the other hand, we detected uniformly

positive associations of λ with July and August precipitations, suggesting that rainfall may alle-

viate water stress and shorten larval diapause [116,117]. In recent decades, the extinction of

Kbb populations at Indiana Dunes National Park has, in part, been ascribed to prolonged sum-

mer droughts that led to extended diapause and host-plant desiccation, impairing their repro-

ductivity [108,118].

Habitat specialist species like Kbbs can have a wider margin of thermal tolerance at the

northern edge than at the southern edge of their range [3,61,119,120]. The asymmetrical

response to thermal gradients [121] could explain why none of the macroclimatic variables

were significant to northwestern Wisconsin populations during the first generation: theses

populations were close to the northern edge of the range where annual temperatures were the

lowest and growing seasons were the shortest. Under these conditions, lupine quality and phe-

nology could be the limiting factors [122,123]. In contrast, Indiana Dunes National Park popu-

lations inhabited the southmost edge of the range and thus, were more likely to be exposed to

intolerant weather conditions. Nevertheless, milder winters, cooler summers, and higher
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humidity due to the proximity to Lake Michigan may have assisted buffering against geograph-

ical gradient effects for decades until the severe drought in 2012 [124].

In the first generation of these five populations, microclimatic effects were utterly over-

whelmed by macroclimates. In the second generation of these populations, on the contrary,

extensive canopy shading during the summer may have not only serve as refugia for Kbbs to

avoid heat stress [89,125–127] but preserve soil moisture to prevent early senescence of wild

lupine and other floral resources, elucidating the positive correlations with λ in northwest Wis-

consin and Indiana Dunes National Park, both of which were at the species’ range limits [128–

134]. The negative associations of λ with slope and trasp in the second generation confirmed

the findings of [135,136]: in the northern hemisphere, north- and east-facing gentle slopes

were much cooler than south- and west-facing steep slopes, leading to higher survivorship of

wild lupine and reproductive success of butterflies during the summertime. Nevertheless,

poorer model performances of the second than the first generations, according to adjusted-R2

values (Tables 2 and 3), indicated that more complicated interactions with biotic or abiotic

environments could be investigated in future studies.

Conclusions

In a nutshell, the combination of density-dependence, macroclimate, and sometimes microcli-

mate best predicted Kbb population dynamics [79]. Previous studies noted that monthly

macroclimate predictors, like mean temperature and total precipitation, exhibited twice the

explanatory powers for insect abundance as did extreme weather indicators, perhaps because

they had more direct influences on species’ physiological responses [137–140]. Although mean

temperature was often considered as the primary macroclimatic driver for many pollinator

species, our models showed that minimum and maximum temperatures and total precipita-

tion were also vital predictors of Kbbs [93,141,142]. We also ascertain that higher temperatures

may generally benefit Kbbs throughout the growing season, while the opposite effect occurred

during the wintertime; similarly, for the precipitation, water stress appeared to be a limiting

factor for the second generation but not at all for the first generation. As such, our study added

new insight that climate change tended to have a mixed effect on this species [93,143–145].

Moreover, significant variables were population-specific, suggesting local adaptation to their

isolated habitats. Therefore, integrating populations across regions could obscure patterns of

spatial heterogeneity, confirming that models at finer scales could be prioritized in the deci-

sion-making process for Kbb conservation.
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